Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Respir Res ; 25(1): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614991

RESUMO

BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.


Assuntos
Asma , Fumar Cigarros , Enfisema , Hipersensibilidade , Enfisema Pulmonar , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/etiologia , Inflamação
2.
Front Immunol ; 15: 1378610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638436

RESUMO

Influenza A virus (IAV) infection in pregnancy resembles a preeclamptic phenotype characterised by vascular dysfunction and foetal growth retardation. Given that low dose aspirin (ASA) is safe in pregnancy and is used to prevent preeclampsia, we investigated whether ASA or NO-conjugated aspirin, NCX4016, resolve vascular inflammation and function to improve offspring outcomes following IAV infection in pregnant mice. Pregnant mice were intranasally infected with a mouse adapted IAV strain (Hkx31; 104 plaque forming units) and received daily treatments with either 200µg/kg ASA or NCX4016 via oral gavage. Mice were then culled and the maternal lungs and aortas collected for qPCR analysis, and wire myography was performed on aortic rings to assess endothelial and vascular smooth muscle functionality. Pup and placentas were weighed and pup growth rates and survival assessed. IAV infected mice had an impaired endothelial dependent relaxation response to ACh in the aorta, which was prevented by ASA and NCX4016 treatment. ASA and NCX4016 treatment prevented IAV dissemination and inflammation of the aorta as well as improving the pup placental ratios in utero, survival and growth rates at post-natal day 5. Low dose ASA is safe to use during pregnancy for preeclampsia and this study demonstrates that ASA may prove a promising treatment for averting the significant vascular complications associated with influenza infection during pregnancy.


Assuntos
Aspirina/análogos & derivados , Vírus da Influenza A , Influenza Humana , Nitratos , Pré-Eclâmpsia , Doenças Vasculares , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta , Aspirina/farmacologia , Inflamação , Aorta
3.
Small ; : e2309200, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295089

RESUMO

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37931708

RESUMO

BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.

5.
J Am Chem Soc ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870621

RESUMO

mRNA lipid nanoparticle (LNP) technology presents enormous opportunities to prevent and treat various diseases. Here, we developed a novel series of LNPs containing ionizable amino-lipids showing a remarkable array of tunable and pH-sensitive lyotropic liquid crystalline mesophases including the inverse bicontinuous cubic and hexagonal phases characterized by high-throughput synchrotron radiation X-ray scattering. Furthermore, with an interest in developing mRNA therapeutics for lung macrophage targeting, we discovered that there is a strong correlation between the mesophase transition of the LNPs during acidification and the macrophage association/transfection efficiency of mRNAs. The slight molecular structural differences between the SM-102 and ALC-0315 ionizable lipids are linked to the LNP's ability to transform their internal structures from an amorphous state to the inverse micellar, hexagonal, and finally cubic structures during endosomal maturation. SM-102 LNPs showed exceptionally improved transfection efficiency due to their ability to form a cubic structure at a lower pH than the ALC-0315 analogues, which remained within the hexagonal structure, previously attributed to promoting endosomal escape of the ionizable LNPs. Overall, the new knowledge draws our attention to the important role of mesophase transition in endosomal escape, and the novel LNP libraries reported herein have broad prospects for advancing mRNA therapeutics.

6.
Front Immunol ; 14: 1240552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795093

RESUMO

Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.


Assuntos
Asma , Infecções por Vírus Respiratório Sincicial , Receptor 7 Toll-Like , Animais , Camundongos , Brônquios/patologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/genética , Camundongos Knockout
7.
Methods Mol Biol ; 2691: 97-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355540

RESUMO

Chronic obstructive pulmonary disease (COPD) is an incurable disease that is a major cause of mortality and morbidity worldwide. Cigarette smoking is a major cause of COPD and triggers progressive airflow limitation, chronic lung inflammation, and irreversible lung damage and decline in lung function. COPD patients often experience various extrapulmonary comorbid diseases, including cardiovascular disease, skeletal muscle wasting, lung cancer, and cognitive decline which markedly impact on disease morbidity, progression, and mortality. People with COPD are also susceptible to respiratory infections which cause exacerbations of the underlying disease (AECOPD). The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. We and others have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD, and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we provide a preclinical model and protocols to assess the cellular, molecular, and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pneumonia/complicações , Pulmão/patologia , Comorbidade , Modelos Animais de Doenças , Inflamação/patologia
8.
Front Oncol ; 13: 1129195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143952

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer death worldwide. Immunotherapy with immune checkpoint inhibitors (ICI) has significantly improved outcomes in some patients, however 80-85% of patients receiving immunotherapy develop primary resistance, manifesting as a lack of response to therapy. Of those that do have an initial response, disease progression may occur due to acquired resistance. The make-up of the tumour microenvironment (TME) and the interaction between tumour infiltrating immune cells and cancer cells can have a large impact on the response to immunotherapy. Robust assessment of the TME with accurate and reproducible methods is vital to understanding mechanisms of immunotherapy resistance. In this paper we will review the evidence of several methodologies to assess the TME, including multiplex immunohistochemistry, imaging mass cytometry, flow cytometry, mass cytometry and RNA sequencing.

9.
Br J Pharmacol ; 180(15): 2018-2034, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908040

RESUMO

BACKGROUND AND PURPOSE: Cardiovascular disease affects up to half of the patients with chronic obstructive pulmonary disease (COPD), exerting deleterious impact on health outcomes and survivability. Vascular endothelial dysfunction marks the onset of cardiovascular disease. The present study examined the effect of a potent NADPH Oxidase (NOX) inhibitor and free-radical scavenger, apocynin, on COPD-related cardiovascular disease. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (Sham) or cigarette smoke (CS) generated from 9 cigarettes·day-1 , 5 days a week for up to 24 weeks with or without apocynin treatment (5 mg·kg-1 ·day-1 , intraperitoneal injection). KEY RESULTS: Eight-weeks of apocynin treatment reduced airway neutrophil infiltration (by 42%) and completely preserved endothelial function and endothelial nitric oxide synthase (eNOS) availability against the oxidative insults of cigarette smoke exposure. These preservative effects were maintained up until the 24-week time point. 24-week of apocynin treatment markedly reduced airway inflammation (reduced infiltration of macrophage, neutrophil and lymphocyte), lung function decline (hyperinflation) and prevented airway collagen deposition by cigarette smoke exposure. CONCLUSION AND IMPLICATIONS: Limiting NOX activity may slow COPD progression and lower cardiovascular disease risk, particularly when signs of oxidative stress become evident.


Assuntos
Doenças Cardiovasculares , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Lesões do Sistema Vascular , Camundongos , Animais , Masculino , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Estresse Oxidativo , Pulmão
10.
Front Oncol ; 13: 1150349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994206

RESUMO

Introduction: Tumour mutational burden (TMB) is an important emerging biomarker for immune checkpoint inhibitors (ICI). The stability of TMB values across distinct EBUS tumour regions is not well defined in advanced lung cancer patients. Methods: This study included a whole-genome sequencing cohort (n=11, LxG cohort) and a targeted Oncomine TML panel cohort (n=10, SxD cohort), where paired primary and metastatic samples were obtained by endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA). Results: The LxG cohort displayed a strong correlation between the paired primary and metastatic sites, with a median TMB score of 7.70 ± 5.39 and 8.31 ± 5.88 respectively. Evaluation of the SxD cohort demonstrated greater inter-tumoural TMB heterogeneity, where Spearman correlation between the primary and metastatic sites fell short of significance. Whilst median TMB scores were not significantly different between the two sites, 3 out of 10 paired samples were discordant when using a TMB cut-off of 10 mutations per Mb. In addition, PD-L1 copy number and KRAS mutations were assessed, demonstrating the feasibility of performing multiple molecular tests relevant to ICI treatment using a single EBUS sample. We also observed good consistency in PD-L1 copy number and KRAS mutation, where cut-off estimates were consistent across the primary and metastatic sites. Conclusions: Assessment of TMB acquired by EBUS from multiple sites is highly feasible and has the potential to improve accuracy of TMB panels as a companion diagnostic test. We demonstrate similar TMB values across primary and metastatic sites, however 3 out of 10 samples displayed inter-tumoural heterogeneity that would alter clinical management.

11.
Brain Behav Immun ; 109: 292-307, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775074

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major, incurable respiratory condition that is primarily caused by cigarette smoking (CS). Neurocognitive disorders including cognitive dysfunction, anxiety and depression are highly prevalent in people with COPD. It is understood that increased lung inflammation and oxidative stress from CS exposure may 'spill over' into the systemic circulation to promote the onset of these extra-pulmonary comorbidities, and thus impacts the quality of life of people with COPD. The precise role of the 'spill-over' of inflammation and oxidative stress in the onset of COPD-related neurocognitive disorders are unclear. The present study investigated the impact of chronic CS exposure on anxiety-like behaviors and social recognition memory, with a particular focus on the role of the 'spill-over' of inflammation and oxidative stress from the lungs. Adult male BALB/c mice were exposed to either room air (sham) or CS (9 cigarettes per day, 5 days a week) for 24 weeks and were either daily co-administered with the NOX2 inhibitor, apocynin (5 mg/kg, in 0.01 % DMSO diluted in saline, i.p.) or vehicle (0.01 % DMSO in saline) one hour before the initial CS exposure of the day. After 23 weeks, mice underwent behavioral testing and physiological diurnal rhythms were assessed by monitoring diurnal regulation profiles. Lungs were collected and assessed for hallmark features of COPD. Consistent with its anti-inflammatory and oxidative stress properties, apocynin treatment partially lessened lung inflammation and lung function decline in CS mice. CS-exposed mice displayed marked anxiety-like behavior and impairments in social recognition memory compared to sham mice, which was prevented by apocynin treatment. Apocynin was unable to restore the decreased Bmal1-positive cells, key in cells in diurnal regulation, in the suprachiasmatic nucleus of the hypothalamus to that of sham levels. CS-exposed mice treated with apocynin was associated with a restoration of microglial area per cell and basal serum corticosterone. This data suggests that we were able to model the CS-induced social recognition memory impairments seen in humans with COPD. The preventative effects of apocynin on memory impairments may be via a microglial dependent mechanism.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Adulto , Masculino , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Microglia , Dimetil Sulfóxido/farmacologia , Qualidade de Vida , Pulmão , Pneumonia/complicações , Núcleo Supraquiasmático , Hipotálamo , Inflamação/complicações , Camundongos Endogâmicos C57BL
12.
PLoS Pathog ; 18(8): e1010703, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930608

RESUMO

Influenza A virus (IAV) infection during pregnancy initiates significant aortic endothelial and vascular smooth muscle dysfunction, with inflammation and T cell activation, but the details of the mechanism are yet to be clearly defined. Here we demonstrate that IAV disseminates preferentially into the perivascular adipose tissue (PVAT) of the aorta in mice. IAV mRNA levels in the PVAT increased at 1-3 days post infection (d.p.i) with the levels being ~4-8 fold higher compared with the vessel wall. IAV infection also increased Ly6Clow patrolling monocytes and Ly6Chigh pro-inflammatory monocytes in the vessel wall at 3 d.p.i., which was then followed by a greater homing of these monocytes into the PVAT at 6 d.p.i. The vascular immune phenotype was characteristic of a "vascular storm"- like response, with increases in neutrophils, pro-inflammatory cytokines and oxidative stress markers in the PVAT and arterial wall, which was associated with an impairment in endothelium-dependent relaxation to acetylcholine. IAV also triggered a PVAT compartmentalised elevation in CD4+ and CD8+ activated T cells. In conclusion, the PVAT of the aorta is a niche that supports IAV dissemination and a site for perpetuating a profound innate inflammatory and adaptive T cell response. The manifestation of this inflammatory response in the PVAT following IAV infection may be central to the genesis of cardiovascular complications arising during pregnancy.


Assuntos
Vírus da Influenza A , Tecido Adiposo , Animais , Aorta , Endotélio Vascular , Feminino , Inflamação/genética , Camundongos , Gravidez
14.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009206

RESUMO

Macrophages undergo a metabolic switch from oxidative phosphorylation to glycolysis when exposed to gram-negative bacterial lipopolysaccharide (LPS), which modulates antibacterial host defence mechanisms. Here, we show that LPS treatment of macrophages increased the classical oxidative burst response via the NADPH oxidase (NOX) 2 enzyme, which was blocked by 2-deoxyglucose (2-DG) inhibition of glycolysis. The inhibition of the pentose phosphate pathway with 6-aminonicotinamide (6-AN) also suppressed the LPS-induced increase in NOX2 activity and was associated with a significant reduction in the mRNA expression of NOX2 and its organizer protein p47phox. Notably, the LPS-dependent enhancement in NOX2 oxidase activity was independent of both succinate and mitochondrial reactive oxygen species (ROS) production. LPS also increased type I IFN-ß expression, which was suppressed by 2-DG and 6-AN and, therefore, is dependent on glycolysis and the pentose phosphate pathway. The type I IFN-ß response to LPS was also inhibited by apocynin pre-treatment, suggesting that NOX2-derived ROS promotes the TLR4-induced response to LPS. Moreover, recombinant IFN-ß increased NOX2 oxidase-dependent ROS production, as well as NOX2 and p47phox expression. Our findings identify a previously undescribed molecular mechanism where both glycolysis and the pentose phosphate pathway are required to promote LPS-induced inflammation in macrophages.

15.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037355

RESUMO

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Assuntos
Proteínas de Ligação a DNA , Imunidade Inata , Interleucina-1beta , Interleucina-6 , Enfisema Pulmonar , Animais , Apoptose , Caspase 1/metabolismo , Receptor gp130 de Citocina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Enfisema Pulmonar/imunologia
16.
Front Mol Neurosci ; 15: 893083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656006

RESUMO

Background and Objective: Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. Methods: Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. Results: Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. Conclusion: We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.

17.
Int J Chron Obstruct Pulmon Dis ; 17: 1179-1194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620349

RESUMO

Purpose: Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) are common comorbidities in chronic obstructive pulmonary disease (COPD), but the underlying pathogenic mechanisms are poorly understood. Given that these morbidities all display increased neutrophil mobilization, the current study aimed to address whether glucose homeostasis relates to signs of neutrophil mobilization in COPD. Methods: The study population included healthy non-smokers (HNS) and long-term smokers without (LTS) and with COPD (LTS+COPD). No subject had T2DM or MetS. Serum cotinine was quantified to evaluate current smoking. Capillary blood glucose was measured after overnight fasting and during an oral glucose tolerance test (OGTT). Neutrophils were quantified in blood and bronchoalveolar lavage samples (BAL). The neutrophil-related cytokines IL-36α, -ß and -γ were quantified (ELISA) along with IL-6, IL-8, INF-γ and CXCL10 (U-Plex®) in plasma and cell-free BAL fluid (BALF). In addition, we quantified neutrophil elastase (ELISA) and net proteinase activity (substrate assay) in BALF. Results: The LTS+COPD group had lower fasting glucose, greater change in glucose during OGTT and higher neutrophil concentrations in BAL and blood compared with HNS. Fasting glucose correlated in a positive manner with blood neutrophil concentration, forced expiratory volume in 1 second/forced vital capacity ratio (FEV1/FVC) and FEV1 (% of predicted) in LTS+COPD. In this group, the concentration of IL-36α in BALF correlated in a negative manner with fasting glucose, blood neutrophil concentration and FEV1, while the CXCL10 concentration in BALF correlated in a negative manner with glucose at the end of OGTT (120 min). We observed no corresponding correlations for neutrophil elastase, net proteinase or gelatinase activity. Conclusion: In smokers with COPD, altered glucose homeostasis is associated with local and systemic signs of increased neutrophil mobilization, but not with local proteinases. This suggests that other specific aspects of neutrophil mobilization constitute pathogenic factors that affect glucose homeostasis in COPD.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Pulmonar Obstrutiva Crônica , Glucose , Homeostase , Humanos , Elastase de Leucócito , Neutrófilos , Fumantes
18.
Respirology ; 27(8): 617-629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35599245

RESUMO

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The ßc cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit ßc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils. METHODS: We have used our unique human ßc receptor transgenic (hßc Tg) mouse strain that expresses human ßc instead of mouse ßc and ßIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human ßc signalling. RESULTS: hßc Tg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte-derived macrophages (cluster of differentiation 11b+ [CD11b+ ] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS-exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase-12 (MMP-12) and IL-17A expression, tissue injury and oedema. CONCLUSION: This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure.


Assuntos
Fumar Cigarros , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Eosinófilos , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/metabolismo
19.
Front Pharmacol ; 13: 870156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401240

RESUMO

There is an urgent need to develop effective therapeutic strategies including immunomodulators to combat influenza A virus (IAV) infection. Influenza A viruses increase ROS production, which suppress anti-viral responses and contribute to pathological inflammation and morbidity. Two major cellular sites of ROS production are endosomes via the NOX2-oxidase enzyme and the electron transport chain in mitochondria. Here we examined the effect of administration of Cgp91ds-TAT, an endosome-targeted NOX2 oxidase inhibitor, in combination with mitoTEMPO, a mitochondrial ROS scavenger and compared it to monotherapy treatment during an established IAV infection. Mice were infected with IAV (Hkx31 strain; 104PFU/mouse) and 24 h post infection were treated with Cgp91ds-TAT (0.2 mg/kg), mitoTEMPO (100 µg) or with a combination of these inhibitors [Cgp91ds-TAT (0.2 mg/kg)/mitoTEMPO (100 µg)] intranasally every day for up to 2 days post infection (pi). Mice were euthanized on Days 3 or 6 post infection for analyses of disease severity. A combination of Cgp91ds-TAT and mitoTEMPO treatment was more effective than the ROS inhibitors alone at reducing airway and neutrophilic inflammation, bodyweight loss, lung oedema and improved the lung pathology with a reduction in alveolitis following IAV infection. Dual ROS inhibition also caused a significant elevation in Type I IFN expression at the early phase of infection (day 3 pi), however, this response was suppressed at the later phase of infection (day 6 pi). Furthermore, combined treatment with Cgp91ds-TAT and mitoTEMPO resulted in an increase in IAV-specific CD8+ T cells in the lungs. In conclusion, this study demonstrates that the reduction of ROS production in two major subcellular sites, i.e. endosomes and mitochondria, by intranasal delivery of a combination of Cgp91ds-TAT and mitoTEMPO, suppresses the severity of influenza infection and highlights a novel immunomodulatory approach for IAV disease management.

20.
Front Pharmacol ; 13: 859146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370652

RESUMO

Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...